Dynamic and rapid deep synthesis of chemical exchange saturation transfer and semisolid magnetization transfer MRI signals


  • Bernstein, M. A., King, K. F. & Zhou, X. J. Handbook of MRI Pulse Sequences (Elsevier, 2004).


    Google Scholar
     

  • Hanson, L. G. Is quantum mechanics necessary for understanding magnetic resonance?. Concepts Magn. Reson. Part A Educ. J. 32, 329–340 (2008).

    Article 

    Google Scholar
     

  • Bloch, F. Nuclear induction. Phys. Rev. 70, 460 (1946).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, B., Liu, J., Koonjoo, N., Rosen, B. R. & Rosen, M. S. Automated pulse sequence generation (autoseq) using bayesian reinforcement learning in an MRI physics simulation environment. In: Proceedings of Joint Annual Meeting ISMRM-ESMRMB (2018).

  • Xu, D., King, K. F., Zhu, Y., McKinnon, G. C. & Liang, Z.-P. Designing multichannel, multidimensional, arbitrary flip angle rf pulses using an optimal control approach. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 59, 547–560 (2008).

    Article 

    Google Scholar
     

  • Ward, K., Aletras, A. & Balaban, R. S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (cest). J. Magn. Reson. 143, 79–87 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, P. Z. Quasi-steady-state amide proton transfer (quass apt) MRI enhances ph-weighted imaging of acute stroke. Magn. Reson. Med. 88, 2633–2644 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, B., Sun, H., Zhang, S., Wang, X. & Guo, Q. Amide proton transfer imaging to evaluate the grading of squamous cell carcinoma of the cervix: A comparative study using 18f fdg pet. J. Magn. Reson. Imaging 50, 261–268 (2019).

    Article 

    Google Scholar
     

  • Zhou, J. et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat. Med. 17, 130–134 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chan, R. W. et al. Quantitative cest and mt at 1.5 t for monitoring treatment response in glioblastoma: Early and late tumor progression during chemoradiation. J. Neuro-Oncol. 151, 267–278 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Longo, D. L., Busato, A., Lanzardo, S., Antico, F. & Aime, S. Imaging the ph evolution of an acute kidney injury model by means of iopamidol, a MRI-cest ph-responsive contrast agent. Magn. Reson. Med. 70, 859–864 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Pavuluri, K. et al. Noninvasive monitoring of chronic kidney disease using ph and perfusion imaging. Sci. Adv. 5, eaaw8357 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Minn, I. et al. Tumor-specific expression and detection of a cest reporter gene. Magn. Reson. Med. 74, 544–549 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meier, S. et al. Non-invasive detection of adeno-associated viral gene transfer using a genetically encoded cest-MRI reporter gene in the murine heart. Sci. Rep. 8, 4638 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Perlman, O. et al. Redesigned reporter gene for improved proton exchange-based molecular MRI contrast. Sci. Rep. 10, 20664 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cember, A. T., Nanga, R. P. R. & Reddy, R. Glutamate-weighted cest (glucest) imaging for mapping neurometabolism: An update on the state of the art and emerging findings from in vivo applications. NMR Biomed. 36, e4780 (2022).

    Article 

    Google Scholar
     

  • Van Zijl, P. C., Lam, W. W., Xu, J., Knutsson, L. & Stanisz, G. J. Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field-dependent saturation spectrum. Neuroimage 168, 222–241 (2018).

    Article 

    Google Scholar
     

  • Mehrabian, H., Detsky, J., Soliman, H., Sahgal, A. & Stanisz, G. J. Advanced magnetic resonance imaging techniques in management of brain metastases. Front. Oncol. 9, 440 (2019).

    Article 

    Google Scholar
     

  • Henkelman, R., Stanisz, G. & Graham, S. Magnetization transfer in MRI: A review. NMR in Biomed. Int. J. Devot. Dev. Appl. Magn. Reson. In Vivo 14, 57–64 (2001).

    CAS 

    Google Scholar
     

  • McConnell, H. M. Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 28, 430–431 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Woessner, D. E., Zhang, S., Merritt, M. E. & Sherry, A. D. Numerical solution of the bloch equations provides insights into the optimum design of paracest agents for MRI. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 53, 790–799 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sun, P. Z., Longo, D. L., Hu, W., Xiao, G. & Wu, R. Quantification of iopamidol multi-site chemical exchange properties for ratiometric chemical exchange saturation transfer (cest) imaging of ph. Phys. Med. Biol. 59, 4493 (2014).

    Article 
    CAS 

    Google Scholar
     

  • McMahon, M. T. et al. Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (quest and quesp): ph calibration for poly-l-lysine and a starburst dendrimer. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 55, 836–847 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Zaiss, M. et al. Quesp and quest revisited-fast and accurate quantitative cest experiments. Magn. Reson. Med. 79, 1708–1721 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jones, K. M. et al. Clinical translation of tumor acidosis measurements with acidocest MRI. Mol. Imaging Biol. 19, 617–625 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, A. X. et al. A sensitive paracest contrast agent for temperature MRI: Eu3+-dotam-glycine (gly)-phenylalanine (phe). Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 59, 374–381 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zaiss, M. et al. A combined analytical solution for chemical exchange saturation transfer and semi-solid magnetization transfer. NMR Biomed. 28, 217–230 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ji, Y., Lu, D., Sun, P. Z. & Zhou, I. Y. In vivo ph mapping with omega plot-based quantitative chemical exchange saturation transfer MRI. Magn. Reson. Med. 89, 299–307 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. In vivo imaging of phosphocreatine with artificial neural networks. Nat. Commun. 11, 1072 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Perlman, O. et al. Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning. Nat. Biomed. Eng. 6, 648–657 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Herz, K. et al. Pulseq-cest: Towards multi-site multi-vendor compatibility and reproducibility of cest experiments using an open-source sequence standard. Magn. Reson. Med. 86, 1845–1858 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perlman, O., Farrar, C. T. & Heo, H.-Y. MR fingerprinting for semisolid magnetization transfer and chemical exchange saturation transfer quantification. NMR Biomed. 36, e4710 (2022).

    Article 

    Google Scholar
     

  • Kim, B., Schär, M., Park, H. & Heo, H.-Y. A deep learning approach for magnetization transfer contrast mr fingerprinting and chemical exchange saturation transfer imaging. Neuroimage 221, 117165 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Perlman, O., Zhu, B., Zaiss, M., Rosen, M. S. & Farrar, C. T. An end-to-end AI-based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST). Magn. Reson. Med. 87, 2792–2810 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. et al. Review and consensus recommendations on clinical apt-weighted imaging approaches at 3t: Application to brain tumors. Magn. Reson. Med. 88, 546–574 (2022).

    Article 

    Google Scholar
     

  • Cohen, O., Huang, S., McMahon, M. T., Rosen, M. S. & Farrar, C. T. Rapid and quantitative chemical exchange saturation transfer (cest) imaging with magnetic resonance fingerprinting (mrf). Magn. Reson. Med. 80, 2449–2463 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Perlman, O. et al. CEST MR-fingerprinting: Practical considerations and insights for acquisition schedule design and improved reconstruction. Magn. Reson. Med. 83, 462–478 (2020).

    Article 

    Google Scholar
     

  • Zaiss, M., Jin, T., Kim, S.-G. & Gochberg, D. F. Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields. NMR Biomed. 35, e4789 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lindeman, L. R. et al. A comparison of exogenous and endogenous cest MRI methods for evaluating in vivo p h. Magn. Reson. Med. 79, 2766–2772 (2018).

    Article 

    Google Scholar
     

  • Weigand-Whittier, J. et al. Accelerated and quantitative three-dimensional molecular MRI using a generative adversarial network. Magn. Reson. Med. 89, 1901–1914 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cohen, O. & Otazo, R. Global deep learning optimization of cest mr fingerprinting (cest-mrf) acquisition schedule. NMR Biomed. e4954 (2023).

  • Cohen, O. et al. Cest mr fingerprinting (cest-mrf) for brain tumor quantification using epi readout and deep learning reconstruction. Magn. Reson. Med. 89, 233–249 (2023).

    Article 

    Google Scholar
     

  • Kang, B., Kim, B., Park, H. & Heo, H.-Y. Learning-based optimization of acquisition schedule for magnetization transfer contrast mr fingerprinting. NMR Biomed. 35, e4662 (2022).

    Article 

    Google Scholar
     

  • Kang, B., Singh, M., Park, H. & Heo, H.-Y. Only-train-once mr fingerprinting for b0 and b1 inhomogeneity correction in quantitative magnetization-transfer contrast. Magn. Reson. Med. 90, 90–102 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Roeloffs, V., Meyer, C., Bachert, P. & Zaiss, M. Towards quantification of pulsed spinlock and cest at clinical mr scanners: an analytical interleaved saturation-relaxation (isar) approach. NMR Biomed. 28, 40–53 (2015).

    Article 

    Google Scholar
     

  • Lankford, C. L., Louie, E. A., Zu, Z., Does, M. D. & Gochberg, D. F. A hybrid numeric-analytic solution for pulsed cest. NMR Biomed. 35, e4610 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kang, B., Heo, H.-Y. & Park, H. Only-train-once mr fingerprinting for magnetization transfer contrast quantification. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, Proceedings, Part VI, 387–396 (Springer, 2022).

  • Ma, D. et al. Magnetic resonance fingerprinting. Nature 495, 187–192 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hilbert, T. et al. Magnetization transfer in magnetic resonance fingerprinting. Magn. Reson. Med. 84, 128–141 (2020).

    Article 

    Google Scholar
     

  • Meng, Y., Cheung, J. & Sun, P. Z. Improved mr fingerprinting for relaxation measurement in the presence of semisolid magnetization transfer. Magn. Reson. Med. 84, 727–737 (2020).

    Article 

    Google Scholar
     

  • Schuenke, P. et al. Validate your cest simulation. In Proceedings of the Annual Meeting ISMRM 2023 (2023).

  • Graf, C., Rund, A., Aigner, C. S. & Stollberger, R. Accuracy and performance analysis for bloch and bloch-mcconnell simulation methods. J. Magn. Reson. 329, 107011 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pulseq-CEST website—WM 3T default 7 pool parameters yaml file. https://github.com/kherz/pulseq-cest-library/blob/master/sim-library.

  • Ravi, K. S., Geethanath, S. & Vaughan, J. T. Pypulseq: A python package for MRI pulse sequence design. J. Open Source Softw. 4, 1725 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Layton, K. J. et al. Pulseq: A rapid and hardware-independent pulse sequence prototyping framework. Magn. Reson. Med. 77, 1544–1552 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Virtanen, P. et al. Scipy 1.0: Fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pulseq-CEST website—APTw 3T 002 2ut 20sincgauss dc50 2s braintumor file. https://github.com/kherz/pulseq-cest-library/tree/master/seq-library/.



  • Source link

    Be the first to comment

    Leave a Reply

    Your email address will not be published.


    *